md4-1000多旋翼无人机飞88分钟解密
来源:晨风影像科技 作者:航拍管理员 发布时间:2014-01-28 20:28 已经有:人看过
md4-1000是更高级的垂直起降四旋翼无人飞行器,全碳结构设计,包含飞控板、导航版、IO板、4 只250W的无刷电机、紧密结合的GPS/INS包含三维磁力计、2.0B CAN总线支持、可拆卸的相机云台,可支持全自动waypoint导航自动驾驶飞行,机载设备可与MD4-200兼容,采用折叠式支臂可更方便运输。相比 MD4-200型,md4-1000拥有更大的任务载荷,更强的抗风能力,更长的续航时间,更优秀的姿态控制,是目前全世界最大型的四旋翼无人飞行器系 统。
md4-1000技术数据
|
md4-200华丽地现身,2安培的悬停电流让人惊叹不已。接着一段md4-1000悬停88分钟的视频更是让人佩服得五体投地。从此心里便埋下一个好奇 的种子, 直到多轴飞行器开始流行,有幸学了点相关知识的皮毛,便想对这个神奇的留空时间分析一番。水平有限,如有不当之处,请指正。
为了引出与留空时间相关的因素,应该从能量的来源以及能量的流失开始。能量源自电池,经过电调、传给电机, 由电机转化为机械能,传递给螺旋桨,由螺旋桨产生升力,抵抗重力的作用,保持飞行器的位置不变。实际上还有另一股能量,传给飞行控制系统,一般来说这股能 量很小,几乎可以忽略,但是由于飞行控制的需要,飞行控制系统会不停的改变电机的转速,一股不可忽视的能量,在不停的加速减速运动中被消耗。即使在无风力 干扰的室内,这股由于飞行控制系统导致的电机、螺旋桨加速减速消耗的能量也能达到飞行器总能量的10%左右。
由此看来多轴飞行器的能量来源只有电池,消耗能量的因素包括所有有重量的零件、飞行控制系统、电调、电机、螺旋桨。作为一个粗略估算的例程,分析这些零件“省油”的妙处。
算例:2400g/(22.2V*18.3Ah)= 5.9 g/Wh。
之前曾经推算过目前的航模电池普遍的能量密度为6.76 g/Wh,可见在电池技术上,md4-1000所用的电池有10%以上的重量优势。
有意思的是,md4-1000的螺旋桨的载荷和模型直升机的载荷非常相似,会不会是在这个飞行器设计之初,设计师就考虑到这个飞行器需要和直升机在留空时间上做一个比拼,至少不应该比直升机差很多的缘故。
md4-1000采用的盘式电机如图5,这个电机看起来挺怪异的,但是如果知道它要工作在1400至1600RPM的话,了解电机理论的人,可能比较好理解为何采用这种设计了。
该电机的磁路长度非常短,采用扁平的外形,定子高度也非常小,这样有利于用较小的电流产生较大的扭矩和较低的转速,才能与大直径低转速螺旋桨匹配。
由于篇幅所限,不便于对电机方面的理论展开更深入的讨论。以下举个简单的小例子,试图分析盘式电机省电的奥秘。
图5所示的盘式电机有36个槽,把盘式电机看做由36个完全一样的电磁铁组成的力的输出机构,假设每个单元输出的力为a,方向与电机外圆相切。盘式电机 的定子外径为D,电磁铁的高度为L,则盘式电机输出的扭矩为36*a*0.5*D。如果制造一个电机,同样有跟盘式电机的电磁铁一样的36个电磁铁,但是 其定子外径为0.5*D,其硅钢片高度将增加1倍,即是由两个单元电磁铁层叠起来。则其力矩为36*a*0.5*(0.5*D),扭矩减小一倍!!为了驱 动同样的螺旋桨,必须将每个单元输出的力a变为2*a,由安培力F=BIL.可知,相当于增大了电流或者导线长度,考虑到硅钢片的磁化曲线(还是难以避开 电机学的东西),为了输出同样的转速和扭矩,缩小电机的半径,即使增加了响应的定子高度,也会造成硅钢片接近磁饱和导致的效率降低、电流增大导致效率降 低,和绕线困难等问题。
实际上,由于使用大直径螺旋桨可以带来比较高的螺旋桨效率,这是md4采用盘式电机的原因,对于一个既定的螺旋桨,都一个最优的电机与之对应。可以推算出这个盘式电机一个比较优化的结果。
注:作为多轴飞行器的设计建议,本人不建议一味最求“盘式”外形的电机,应考虑到飞行器的用途,进行整机优化,确定螺旋桨的性能,再根据螺旋桨的动力要 求,在有条件的情况下,选择最合理的电机(又说空话了,这个最优真不容易 )。md4-1000采用的盘式电机如图5,这个电机看起来挺怪异的,但是如果知道它要工作在1400至1600RPM的话,了解电机理论的人,可能比较 好理解为何采用这种设计了。
4、电调、飞行控制系统
如图6,电调输出的导线有6根,比较粗一点的应该是电源线,其余四根应为信号线,采用串口或者其他方式与飞行控制系统进行双向通信,飞行控制系统可以给 电调发送指令,电调也可以将动力系统的信息(比如电机的转速)反馈给飞行控制系统, 这样飞行控制系统对动力系统的控制就是闭环控制。相比现在航模行业使用的开环方案(飞行控制系统只管控制电调的PWM值,不管电机转速是否随之升高,只是 由陀螺仪来 判别飞行器的姿态),对电机转速进行闭环控制,姿态的调整可能实现变成“一步到位”,极大地减少了电机转速变化的频率和幅度。从而减少了由于电机频繁做变 速运动引起的额外能量损耗。现在航模的多轴动力系统动力系统在微风的时候这部分损耗高达25%左右,风力风向如果剧烈变化这部分损耗则变得更大,在室内飞 行会就稍微好些。
注:以上关于电调及飞行控制系统的分析完全是猜测,轻信者后果自负。
6、留空时间的估算
a)电池输出的功率=18.3*22.2/(88/60)=277W;
b)飞机所需的动力系统效率=5050g/277W =18.23g/W ;
c)螺旋桨效率*85%* (1-10%)=18.23g/W ;
即螺旋桨的效率为23.8g/W ,在第二节螺旋桨部分所计算出的21至24g/W 范围之内。
您可能想了解